20 Years of TRMM-GPM Precipitation Tracking of the MJO and Its Implication for Tropical Weather and Climate

Shuyi S. Chen, Brandon Kerns, and Ajda Savarin University of Washington Hui Su, JPL (Poster # 240)

(PMM Science Team Meeting, Phoenix, AZ, 9-11 October 2018)

What is the MJO?

Realtime Multivariate MJO (RMM) Index

(Wheeler and Hendon, 2004)

Limitations:

- No spatial & temporal info
- Not a direct representation of MJO precipitation
- Cannot be computed in regional models

Large-scale Precipitation Tracking (LPT):

- TMPA 3B42 V7 data (3 hourly)
- <u>LP Object (LPO)</u>: 3-day accumulated rainfall with spatial filter (5° X 5°) area of > 12 mm day⁻¹ (> 250,000 km²)
- LP Tracking (LPT): track LPO in time > 7 days
- MJO LPT: LPT > 10 days; eastward propagation speed > 0 m/s

LPO

Tracking the MJO

- Traditional RMM index cannot provide spatial and temporal variation of the MJO.
- LPT is used to track MJO precipitation. (Kerns and Chen 2016)

Tracking the MJO

- Traditional RMM index cannot provide spatial and temporal variation of the MJO.
- LPT is used to track MJO precipitation. (Kerns and Chen 2016)

Tracking the MJO

- Traditional RMM index cannot provide spatial and temporal variation of the MJO.
- LPT is used to track MJO precipitation. (Kerns and Chen 2016)
- Challenge: majority of NWP and climate models cannot reproduce MJO precipitation patterns.

MJO LPT System Tracks: 1998 - 2018

MJO LPT System Tracks: 1998 - 2018

Contribution of Large-scale Precipitation to Total Rainfall

8

2

Global mean = 2.82 mm/day

LPT = 0.55 mm/day (20%)MJO LPT = 0.28 mm/day (10%)

Tropical mean = 3.81 mm/day

LPT = 1.18 mm/day (31%)MJO LPT = 0.62 mm/day (16%)

Coupled Atmosphere-Ocean Modeling

- 1) Sensitivity to model resolution (parameterized v. explicitly resolved convection).
- 2) Effect of air-sea coupling on MJO prediction.

Sensitivity to Model Resolution (Savarin and Chen 2018a)

■ Parameterized convection (at 12 km) does not reproduce the observed MJO, but some schemes are better than others.

Sensitivity to Model Resolution (Savarin and Chen 2018a)

Sensitivity to Model Resolution (Savarin and Chen 2018a)

- Explicitly resolved convection drastically improves the MJO prediction.
- Results vary depending on the lateral boundary conditions.

Impact of atmosphere-ocean coupling

(Savarin and Chen 2018b)

Uncoupled model produces stationary "MJO". Coupled model produces clear eastward propagation, as observed.

Impact of atmosphere-ocean coupling

- Uncoupled model produces stationary "MJO".
 Coupled model produces clear eastward propagation, as observed.
- Reason for this difference is the SST cooling induced by the MJO.

SUMMARY

- ➤ Large-scale Precipitation Tracking (LPT) provides a robust and direct measure of MJO convection, which can capture the spatial structure and its variability
- > TRMM-GPM (TMPA) data provides an unique MJO climatology database for weather and climate research
- ➤ MJO impacts global weather downstream, which is key for subseasonal-toseasonal (S2S) prediction, and a source of predictability.
- LPT can be used for verification of MJO prediction in both global and regional models
- ➤ Higher resolution and atmosphere-ocean coupling improve MJO initiation and its eastward propagation.